Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 851
Filter
1.
Mikrochim Acta ; 191(6): 300, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709399

ABSTRACT

Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of ßVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.


Subject(s)
Biosensing Techniques , Glycated Hemoglobin , Glycated Hemoglobin/analysis , Biosensing Techniques/methods , Humans , Diabetes Mellitus/diagnosis , Diabetes Mellitus/blood , Blood Glucose/analysis
2.
Mater Horiz ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691397

ABSTRACT

The two-dimensional quantum anomalous Hall (QAH) effect is direct evidence of non-trivial Berry curvature topology in condensed matter physics. Searching for QAH in 2D materials, particularly with simplified fabrication methods, poses a significant challenge in future applications. Despite numerous theoretical works proposed for the QAH effect with C = 2 in graphene, neglecting magnetism sources such as proper substrate effects lacks experimental evidence. In this work, we propose the QAH effect in graphene/MnBi2Te4 (MBT) heterostructure based on density-functional theory (DFT) calculations. The monolayer MBT introduces spin-orbital coupling, Zeeman exchange field, and Kekulé distortion as a substrate effect into graphene, resulting in QAH with C = 1 in the heterostructure. Our effective Hamiltonian further presents a rich phase diagram that has not been studied previously. Our work provides a new and practical way to explore the QAH effect in monolayer graphene and the magnetic topological phases by the flexibility of MBT family materials.

3.
Int J Biol Macromol ; 267(Pt 1): 130804, 2024 May.
Article in English | MEDLINE | ID: mdl-38565361

ABSTRACT

Schisandra chinensis (Turcz.) Baill (SC) is a traditional sedative in China, with wide applications for treating various neurological disorders. Its polysaccharide component has been gaining increased attention for its potential in nerve protection. While raw SC is the primary focus of current research, its processed products are primarily utilized as clinical medicines. Notably, limited research exists on the mechanisms underlying the effects of wine-processed Schisandra chinensis polysaccharide (WSCP) in Alzheimer's Disease (AD). Therefore, this study seeks to assess the therapeutic impact of WSCP on AD mice and investigate the underlying mechanisms through biochemical and metabolomics analyses. The results demonstrate that WSCP exerts significant therapeutic effects on AD mice by enhancing learning and memory abilities, mitigating hippocampal neuronal damage, reducing abnormal amyloid-beta (Aß) deposition, and attenuating hyperphosphorylation of Tau. Biochemical analysis revealed that WSCP can increase SOD content and decrease MDA, IL-6, and TNF-α content in AD mice. Furthermore, serum metabolomic results showed that WSCP intervention can reverse metabolic disorders in AD mice. 43 endogenous metabolites were identified as potential biomarkers for WSCP treatment of AD, and the major metabolic pathways were Ala, Glu and Asp metabolism, TCA cycle. Overall, these findings will provide a basis for further development of WSCP.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Metabolomics , Polysaccharides , Schisandra , Wine , Animals , Schisandra/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Metabolomics/methods , Wine/analysis , Male , Amyloid beta-Peptides/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , tau Proteins/metabolism , Biomarkers , Metabolome/drug effects , Memory/drug effects
4.
Phytother Res ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666435

ABSTRACT

Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/ß-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.

5.
Angew Chem Int Ed Engl ; : e202404838, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654551

ABSTRACT

Autocatalysis has been well recognized to implicate in the emergence of life and is intrinsic to the biomolecular replication. Recently, an efficient template autocatalysis driven by solvent-free crystallization has been reported. Herein, we unveil the role of intermolecular hydrogen (H) bonds formed by amides in crystallization-driven template autocatalysis (CDTA), which involves the autocatalytic activity, template selectivity, and thermal responsiveness. We found that the thermal-induced cis-trans isomerization of amides possibly affects the H-bonding-mediated template ability of products for autocatalytic transformation. As a result, CDTA can be reversibly inhibited and activated by tuning the reaction temperatures. Our work sheds light on the significance of noncovalent H-bonding interactions in artificial self-replicators.

6.
FASEB J ; 38(7): e23534, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38597911

ABSTRACT

Satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute and chronic muscle injuries. The balance between stem cell self-renewal and differentiation determines the kinetics and efficiency of skeletal muscle regeneration. This study assessed the function of Islr in SC asymmetric division. The deletion of Islr reduced muscle regeneration in adult mice by decreasing the SC pool. Islr is pivotal for SC proliferation, and its deletion promoted the asymmetric division of SCs. A mechanistic search revealed that Islr bound to and degraded secreted protein acidic and rich in cysteine (SPARC), which activated p-ERK1/2 signaling required for asymmetric division. These findings demonstrate that Islr is a key regulator of SC division through the SPARC/p-ERK1/2 signaling pathway. These data provide a basis for treating myopathy.


Subject(s)
MAP Kinase Signaling System , Osteonectin , Animals , Mice , Asymmetric Cell Division , Cell Differentiation , Osteonectin/genetics , Signal Transduction
7.
Article in English | MEDLINE | ID: mdl-38578382

ABSTRACT

Oxidative stress and apoptosis play crucial roles in myocardial ischemia‒reperfusion injury (MIRI). In this study, we investigated the role of circ_0073932 in MIRI as well as its molecular mechanism. A hypoxia/reoxygenation (H/R) cardiomyocyte model was established with H9C2 cardiomyocytes, and RT-qPCR was used to measure gene expression. We observed that circ_0073932 expression was abnormally increased in the H/R cardiomyocyte model and in blood samples from MIRI patients. Inhibition of circ_0073932 suppressed H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. Dual luciferase reporter assays showed that circ_0073932 targeted the downregulation of miR-493-3p, and miR-493-3p targeted the downregulation of FAF1. Furthermore, si-circ_0073932, an miR-493-3p inhibitor, oe-FAF1, or si-FAF1 were transfected into H9C2 cardiomyocytes to investigate the roles of these factors in MIRI. Our results showed that compared with the H/R group, si-circ_0073932 inhibited H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. These results were reversed by the miR-493-3p inhibitor or oe-FAF1. Finally, a rat model of MIRI was established, and si-circ_0073932 was administered. Inhibition of circ_0073932 reduced the area of myocardial infarction and decreased the levels of apoptosis and oxidative stress by inhibiting the JNK signaling pathway. Our study indicated that circ_0073932 mediates MIRI via miR-493-3p/FAF1/JNK in vivo and in vitro, revealing novel insights into the pathogenesis of MIRI and providing a new target for the clinical treatment of MIRI.

8.
Nat Commun ; 15(1): 3017, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589414

ABSTRACT

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

9.
Nanoscale ; 16(17): 8607-8617, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38602354

ABSTRACT

High-throughput biofluid metabolomics analysis for screening life-threatening diseases is urgently needed. However, the high salt content of biofluid samples, which introduces severe interference, can greatly limit the analysis throughput. Here, a new 3-D interconnected hierarchical superstructure, namely a "plasmonic gold-on-silica (Au/SiO2) double-layered aerogel", integrating distinctive features of an upper plasmonic gold aerogel with a lower inert silica aerogel was successfully developed to achieve in situ separation and storage of inorganic salts in the silica aerogel, parallel enrichment of metabolites on the surface of the functionalized gold aerogel, and direct desorption/ionization of enriched metabolites by the photo-excited gold aerogel for rapid, sensitive, and comprehensive metabolomics analysis of human serum/urine samples. By integrating all these unique advantages into the hierarchical aerogel, multifunctional properties were introduced in the SALDI substrate to enable its effective utilization in clinical metabolomics for the discovery of reliable metabolic biomarkers to achieve unambiguous differentiation of early and advanced-stage lung cancer patients from healthy individuals. This study provides insight into the design and application of superstructured nanomaterials for in situ separation, storage, and photoexcitation of multi-components in complex biofluid samples for sensitive analysis.


Subject(s)
Gels , Gold , Metabolomics , Silicon Dioxide , Humans , Silicon Dioxide/chemistry , Gold/chemistry , Gels/chemistry , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Nanostructures/chemistry
12.
Nature ; 628(8008): 515-521, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509374

ABSTRACT

The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2-8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2-4,9,10.

13.
Heliyon ; 10(6): e27701, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515659

ABSTRACT

Countries face exasperating and inclement climate worldwide. Food and feed security could be their paramount life objective. The study aimed to investigate the impact of selenium on the protein content and distribution in different parts of rice. For this purpose, advanced selenium biofortified breeding material developed after generations of breeding efforts was investigated at the field area, rice research institute, Chengdu, China during cropping season 2021-22. The accumulation and distribution of selenium and protein contents were observed in various fractions of selenium-enriched rice (Z3057B) and positive control (727). The correlation studies for selenium and protein quantification leads to the optimization of the breeding material and relevance in virtue. The rice fractions indicated rice embryo retains highest selenium contents, which gradually decreases in succession (other rice parts). The difference in protein content between the embryo and endosperm of Se-enriched rice is significant, while that between embryo and aleurone layer is not obvious. The selenium protein was found with molecular weight of 13.6-122.6 kDa. The protein of each molecular weight is found to bind with selenium, but the binding strength of selenium is negatively correlated with the molecular weight of protein. The 67.5% of the total selenium sticks with protein having molecular weight less than 38.8 kDa. In summary, protein with low molecular weight (13.4 kDa) binds maximum selenium and accounts for highest total protein content (40.76%).

14.
Proc Natl Acad Sci U S A ; 121(11): e2316544121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442155

ABSTRACT

Muscle regeneration is a complex process relying on precise teamwork between multiple cell types, including muscle stem cells (MuSCs) and fibroadipogenic progenitors (FAPs). FAPs are also the main source of intramuscular adipose tissue (IMAT). Muscles without FAPs exhibit decreased IMAT infiltration but also deficient muscle regeneration, indicating the importance of FAPs in the repair process. Here, we demonstrate the presence of bidirectional crosstalk between FAPs and MuSCs via their secretion of extracellular vesicles (EVs) containing distinct clusters of miRNAs that is crucial for normal muscle regeneration. Thus, after acute muscle injury, there is activation of FAPs leading to a transient rise in IMAT. These FAPs also release EVs enriched with a selected group of miRNAs, a number of which come from an imprinted region on chromosome 12. The most abundant of these is miR-127-3p, which targets the sphingosine-1-phosphate receptor S1pr3 and activates myogenesis. Indeed, intramuscular injection of EVs from immortalized FAPs speeds regeneration of injured muscle. In late stages of muscle repair, in a feedback loop, MuSCs and their derived myoblasts/myotubes secrete EVs enriched in miR-206-3p and miR-27a/b-3p. The miRNAs repress FAP adipogenesis, allowing full muscle regeneration. Together, the reciprocal communication between FAPs and muscle cells via miRNAs in their secreted EVs plays a critical role in limiting IMAT infiltration while stimulating muscle regeneration, hence providing an important mechanism for skeletal muscle repair and homeostasis.


Subject(s)
Extracellular Vesicles , MicroRNAs , Satellite Cells, Skeletal Muscle , Muscle Fibers, Skeletal , Communication , MicroRNAs/genetics , Regeneration/genetics
15.
Front Cardiovasc Med ; 11: 1324345, 2024.
Article in English | MEDLINE | ID: mdl-38476381

ABSTRACT

Objective: Cell division cycle 42 (CDC42) regulates CD4+ T-cell differentiation and participates in vascular stiffness and atherosclerosis and is involved in the progression of Stanford type B aortic dissection (TBAD). This study aimed to explore the correlation between serum CDC42 level and CD4+ T cell subsets and in-hospital mortality in TBAD patients. Methods: Serum CDC42 and peripheral blood T-helper (Th) 1, Th2, and Th17 cells were detected in 127 TBAD patients by enzyme-linked immunosorbent assay and flow cytometry, respectively. Serum CDC42 was also quantified in 30 healthy controls. Results: Serum CDC42 was decreased in TBAD patients vs. healthy controls (median [interquartile range (IQR)]: 418.0 (228.0-761.0) pg/ml vs. 992.0 (716.3-1,445.8) pg/ml, P < 0.001). In TBAD patients, serum CDC42 was negatively correlated with Th17 cells (P = 0.001), but not Th1 (P = 0.130) or Th2 cells (P = 0.098). Seven (5.5%) patients experienced in-hospital mortality. Serum CDC42 was reduced in patients who experienced in-hospital mortality vs. those who did not (median (IQR): 191.0 (145.0-345.0) pg/ml vs. 451.5 (298.3-766.8) pg/ml, P = 0.006). By receiver operating characteristic analysis, serum CDC42 showed a good ability for estimating in-hospital mortality [area under curve = 0.809, 95% confidence interval (CI) = 0.662-0.956]. By the multivariate logistic regression analysis, elevated serum CDC42 [odd ratio (OR) = 0.994, 95% CI = 0.998-1.000, P = 0.043] was independently correlated with lower risk of in-hospital mortality, while higher age (OR = 1.157, 95% CI = 1.017-1.316, P = 0.027) was an independent factor for increased risk of in-hospital mortality. Conclusion: Serum CDC42 negatively associates with Th17 cells and is independently correlated with decreased in-hospital mortality risk in TBAD patients.

16.
ACS Appl Mater Interfaces ; 16(10): 12321-12331, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38431875

ABSTRACT

Apart from single hemostasis, antibacterial and other functionalities are also desirable for hemostatic materials to meet clinical needs. Cationic materials have attracted great interest for antibacterial/hemostatic applications, and it is still desirable to explore rational structure design to address the challenges in balanced hemostatic/antibacterial/biocompatible properties. In this work, a series of cationic microspheres (QMS) were prepared by the facile surface modification of microporous starch microspheres with a cationic tannic acid derivate, the coating contents of which were adopted for the first optimization of surface structure and property. Thermoresponsive gels with embedded QMS (F-QMS) were further prepared by mixing a neutral thermosensitive polymer and QMS for second structure/function optimization through different QMS and loading contents. In vitro and in vivo results confirmed that the coating content plays a crucial role in the hemostatic/antibacterial/biocompatible properties of QMS, but varied coating contents of QMS only lead to a classical imperfect performance of cationic materials. Inspiringly, the F-QMS-4 gel with an optimal loading content of QMS4 (with the highest coating content) achieved a superior balanced in vitro hemostatic/antibacterial/biocompatible properties, the mechanism of which was revealed as the second regulation of cell-material/protein-material interactions. Moreover, the optimal F-QMS-4 gel exhibited a high hemostatic performance in a femoral artery injury model accompanied by the easy on-demand removal for wound healing endowed by the thermoresponsive transformation. The present work offers a promising approach for the rational design and facile preparation of cationic materials with balanced hemostatic/antibacterial/biocompatible properties.


Subject(s)
Hemostatics , Polyphenols , Hemostatics/pharmacology , Hemostatics/chemistry , Microspheres , Hemostasis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gels/pharmacology , Starch/chemistry
17.
Nat Mater ; 23(5): 604-611, 2024 May.
Article in English | MEDLINE | ID: mdl-38491148

ABSTRACT

The conventional fabrication of bulk van der Waals (vdW) materials requires a temperature above 1,000 °C to sinter from the corresponding particulates. Here we report the near-room-temperature densification (for example, ∼45 °C for 10 min) of two-dimensional nanosheets to form strong bulk materials with a porosity of <0.1%, which are mechanically stronger than the conventionally made ones. The mechanistic study shows that the water-mediated activation of van der Waals interactions accounts for the strong and dense bulk materials. Initially, water adsorbed on two-dimensional nanosheets lubricates and promotes alignment. The subsequent extrusion closes the gaps between the aligned nanosheets and densifies them into strong bulk materials. Water extrusion also generates stresses that increase with moulding temperature, and too high a temperature causes intersheet misalignment; therefore, a near-room-temperature moulding process is favoured. This technique provides an energy-efficient alternative to design a wide range of dense bulk van der Waals materials with tailored compositions and properties.

18.
J Integr Med ; 22(1): 32-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38310025

ABSTRACT

BACKGROUND: Transvaginal oocyte retrieval is frequently followed by adverse events related to anesthesia and the procedure. Some research showed that transcutaneous electrical acupoint stimulation (TEAS) can relieve intraoperative pain and postoperative nausea. OBJECTIVE: This study examined whether TEAS can alleviate pain and relieve adverse symptoms after oocyte retrieval. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: Altogether 128 patients were randomly divided into the TEAS group and the mock TEAS group. The two groups received a 30-minute-long TEAS or mock TEAS treatment that began 30 min after oocyte retrieval. MAIN OUTCOME MEASURES: The primary outcome was the visual analog scale (VAS) pain score. Secondary outcomes were pressure pain threshold, McGill score, pain rating index (PRI), present pain intensity (PPI), VAS stress score, VAS anxiety score, and postoperative adverse symptoms. RESULTS: The baseline characteristics of the two groups were comparable (P > 0.05). The VAS pain scores of the TEAS group were lower than those of the mock TEAS group at 60 and 90 min after oocyte retrieval (P < 0.05). The McGill score, PRI and PPI in the TEAS group were significantly lower than those in the control group at 60 min after oocyte retrieval (P < 0.05). However, the two groups had equivalent beneficial effects regarding the negative emotions, such as nervousness and anxiety (P > 0.05). The TEAS group was superior to the mock TEAS group for relieving postoperative adverse symptoms (P < 0.05). CONCLUSION: TEAS treatment can relieve postoperative pain and postoperative adverse symptoms for patients undergoing oocyte retrieval. Please cite this article as: Liu LY, Su Y, Wang RR, Lai YY, Huang L, Li YT, Tao XY, Su MH, Zheng XY, Huang SC, Wu YN, Yu SY, Liang FR, Yang J. Transcutaneous electrical acupoint stimulation benefits postoperative pain relief of oocyte retrieval: A randomized controlled trial. J Integr Med. 2024; 22(1): 32-38.


Subject(s)
Oocyte Retrieval , Pain, Postoperative , Transcutaneous Electric Nerve Stimulation , Humans , Acupuncture Points , Oocyte Retrieval/adverse effects , Pain Management/methods , Pain, Postoperative/etiology , Pain, Postoperative/therapy , Transcutaneous Electric Nerve Stimulation/methods , Female
19.
Angew Chem Int Ed Engl ; 63(12): e202318461, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38302835

ABSTRACT

Photocatalytic selective oxidation under visible light presents a promising approach for the sustainable transformation of biomass-derived wastes. However, achieving both high conversion and excellent selectivity poses a significant challenge. In this study, two valuable trioses, glyceraldehyde and dihydroxyacetone, are produced from glycerol over Cuδ+ -decorated WO3 photocatalyst in the presence of H2 O2 . The photocatalyst exhibits a remarkable five-fold increase in the conversion rate (3.81 mmol ⋅ g-1 ⋅ h-1 ) while maintaining a high selectivity towards two trioses (46.4 % to glyceraldehyde and 32.9 % to dihydroxyacetone). Through a comprehensive analysis involving X-ray photoelectron spectroscopy measurements with and without light irradiation, electron spin resonance spectroscopy, and isotopic analysis, the critical role of Cu+ species has been explored as efficient hole acceptors. These species facilitate charge transfer, promoting glycerol oxidation by photoholes, followed by coupling with OH- , which are subsequently dehydrated to yield the desired glyceraldehyde and dihydroxyacetone.

20.
Ageing Res Rev ; 96: 102248, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408490

ABSTRACT

Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.


Subject(s)
Epilepsy, Temporal Lobe , Ferroptosis , Mitochondrial Diseases , Humans , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Seizures/complications , Seizures/metabolism , Seizures/pathology , Mitochondria/metabolism , Mitochondrial Diseases/complications , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...